Gå direkt till innehållet
Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors
Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors
Spara

Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors

Författare:
Engelska
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "e;Borcherds products"e; have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds' construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved.
Författare
Jan H. Bruinier
ISBN
9783540458722
Språk
Engelska
Utgivningsdatum
2004-10-11
Tillgängliga elektroniska format
  • PDF - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator