Gå direkt till innehållet
Artificial Neural Network-based Designs of Prestressed Concrete and Composite Structures
Artificial Neural Network-based Designs of Prestressed Concrete and Composite Structures
Spara

Artificial Neural Network-based Designs of Prestressed Concrete and Composite Structures

Författare:
Engelska
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
This book introduces artificial neural network (ANN)-based Lagrange optimization techniques for a structural design of prestressed concrete structures based on Eurocode 2, and composite structures based on American Institute of Steel Construction and American Concrete Institute standards. The book provides robust design charts for prestressed concrete structures, which are challenging to achieve using conventional design methods.Using ANN-based design charts, the holistic design of a post-tensioned beam is performed to optimize design targets (objective functions), while calculating 21 forward outputs, in arbitrary sequences, from 21 forward inputs. Applies the powerful tools of ANN to the optimization of prestressed concrete structures and composite structures including columns and beams Multi-objective optimizations (MOO) of prestressed concrete beams are performed using an ANN-based Lagrange algorithm Offers a Pareto frontier using an ANN-based MOO for composite beams and composite columns sustaining multi-biaxial loads Heavily illustrated in color and with diverse practical design examples in line with EC2, ACI, and ASTM codes The book offers optimal solutions for structural designers and researchers, enabling readers to construct design charts to minimize their own design targets under various design requirements based on any design code.
Författare
Won-Kee Hong
ISBN
9781000913934
Språk
Engelska
Utgivningsdatum
2023-09-25
Förlag
CRC PRESS
Tillgängliga elektroniska format
  • Epub - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator