Gå direkt till innehållet
Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning
Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning
Spara

Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning

Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
This book explores and motivates the need for building homogeneous and heterogeneous multi-core systems for machine learning to enable flexibility and energy-efficiency. Coverage focuses on a key aspect of the challenges of (extreme-)edge-computing, i.e., design of energy-efficient and flexible hardware architectures, and hardware-software co-optimization strategies to enable early design space exploration of hardware architectures. The authors investigate possible design solutions for building single-core specialized hardware accelerators for machine learning and motivates the need for building homogeneous and heterogeneous multi-core systems to enable flexibility and energy-efficiency. The advantages of scaling to heterogeneous multi-core systems are shown through the implementation of multiple test chips and architectural optimizations.
Undertitel
Journey from Single-core Acceleration to Multi-core Heterogeneous Systems
ISBN
9783031382307
Språk
Engelska
Utgivningsdatum
2023-09-15
Tillgängliga elektroniska format
  • Epub - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator