Gå direkt till innehållet
Assuring Safe Operation of Robotic Systems under Uncertainty
Assuring Safe Operation of Robotic Systems under Uncertainty
Spara

Assuring Safe Operation of Robotic Systems under Uncertainty

Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
Assuring Safe Operation of Robotic Systems under Uncertainty: Control and Learning Methods applies set-theoretic and reinforcement learning approaches to formulate, analyze, and solve the challenge of ensuring safe operation of robotic systems in an uncertain environment.The authors adopt learning-supported, set-theoretic methods-specifically, the barrier Lyapunov function and the control barrier function-to achieve desirable robust safety with guaranteed performance in continuous-time nonlinear control applications. They also combine reinforcement learning with control theory to ensure safe learning and optimization. The reinforcement learning-based optimization framework incorporates safety and robustness guarantees by applying theoretical analysis tools from the field of control.This book will be of interest to researchers, engineers, and students specializing in robot planning and control.
Undertitel
Control and Learning Methods
ISBN
9781040751336
Språk
Engelska
Utgivningsdatum
2025-11-28
Förlag
CRC PRESS
Tillgängliga elektroniska format
  • Epub - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator